Home
  
Home บทความวิทยาศาสตร์ เซ็นสมุดเยี่ยม
ทฤษฎีสัมพัทธภาพพิเศษเบื้องต้น PDF พิมพ์


ความพร้อมกันของเหตุการณ์ในทฤษฎีสัมพัทธภาพ

ผลของ Lorentz transformation
- ปัญหาเกี่ยวกับเหตุการณ์ที่เกิดขึ้นพร้อมกัน (Relativity of Simultaneity)
- การหดของระยะทาง (Length contraction)
- การยืดของช่วงเวลา (Time Dilation)

ความพร้อมกันของเหตุการณ์ในทฤษฎีสัมพัทธภาพ

ในสัมพัทธภาพแบบกาลิเลโอ ถ้าเหตุการณ์สองเหตุการณ์เกิดขึ้นพร้อมกันในกรอบอ้างอิงหนึ่ง เหตุการณ์ทั้งสองจะเกิดขึ้นพร้อมกันในทุกๆกรอบอ้างอิง

ในทฤษฎีสัมพัทธภาพพิเศษ เหตุการณ์สองเหตุการณ์ที่เกิดขึ้นพร้อมกันในกรอบอ้างอิงหนึ่ง ไม่จำเป็นที่จะต้องเกิดขึ้นพร้อมกันในทุกๆกรอบอ้างอิง



ตัวอย่าง

กรอบอ้างอิง S^\prime กำลังเคลื่อนที่ด้วยความเร็วคงที่ v เทียบกับกรอบอ้างอิง S

45606


สมมติว่ามีเหตุการณ์ 2 เหตุการณ์เกิดขึ้น โดยผู้สังเกตในกรอบอ้างอิง S เห็นเหตุการณ์ ทั้งสองเกิดขึ้นพร้อมกัน ที่เวลา t = 0\;s โดยเห็นเหตุการณ์แรกเกิดขึ้นที่ตำแหน่ง x_1 = 0\;kmส่วนเหตุการณ์ที่สองเกิดขึ้นที่ตำแหน่ง x_2 = 3\;km

จงหาว่าผู้สังเกตในกรอบอ้างอิง S^\prime ที่กำลังเครื่องที่สัมพัทธ์กับ S ด้วยความเร็ว 0.6c จะเห็นเหตุการณ์ทั้งสองพร้อมกันหรือไม่อย่างไร?

วิธีทำ
ในกรอบอ้างอิง S ผู้สังเกตจะของทั้งสองเหตุการณ์เกิดดังนี้
- เหตุการณ์แรก E_1: (x_1, t_1) = (0 \;m,0\;s)
- เหตุการณ์ที่สอง  E_2:(x_2, t_2) = (3000\;m,0\;s)
(ทั้งสองเหตุการณ์เกิดขึ้นที่เวลาเดียวกัน t_1 = t_2)

สำหรับผู้สังเกตในกรอบอ้างอิง S^\prime เราจะสมมุติให้ผู้สังเกตเห็นเหตุการณ์ที่แรก E^\prime_1 ที่พิกัด (x^\prime_1, t^\prime_1) และจะเห็นเหตุการณ์ที่สอง E^\prime_2 ที่พิกัด (x^\prime_2, t^\prime_2) ซึ่งสามารถคำนวณได้ดังนี้

เหตุการณ์แรก

\displaystyle{E^{\prime}_1 : (x^\prime_1, t^\prime_1) = (\frac{x_1 - vt_1}{\sprt{1 - \beta^2}}, \frac{t_1 - \beta x_1/c}{\sprt{1 - \beta^2}}) = (0\;m, 0\;s)}



เหตุการณ์ที่สอง

\displaystyle{x^\prime_2 = \frac{x_2 - vt_2}{\sprt{1 - \beta^2}} = \frac{3000}{\sprt{1 - (0.6)^2}} = 3,750\;m}


\displaystyle{t^\prime_2 = \frac{t_2 - \beta x_2/c}{\sprt{1 - \beta^2}} = \frac{-(0.6)(3000)/(3 \times 10^8)}{ 0.8} = -7.5 \times 10^{-6}\;s}


หรือ

E^\prime_2 = (x^\prime_2,t^\prime_2) = ( 3,750\;m,-7.5 \times 10^{-6}\;s)


จะเห็นว่า

t^{\prime}_1 \neq t^\prime_2


ผู้สังเกต S^\primeจะเห็นเหตุการณ์ทั้งสองเกิดขึ้นไม่พร้อมกัน โดยจะเห็นเหตุการณ์ที่สองก่อนที่จะเห็นเหตการณ์ที่หนึ่ง นอกจากนี้ ยังเห็นเหตการณ์ทั้งสองเกิดขึ้นคนละต่ำแหน่งกับผู้สังเกต S อีกด้วย



< ก่อนหน้า   ถัดไป >
ขณะนี้มี 37 บุคคลทั่วไป ออนไลน์
สถิติผู้เยี่ยมชม
ผู้เยี่ยมชม: 11733330  คน
หนังสืออิเล็กทรอนิกส์
ฟิสิกส์ 1 (ภาคกลศาสตร์)
ฟิสิกส์ 1 (ความร้อน)
ฟิสิกส์ 2
กลศาสตร์เวกเตอร์
โลหะวิทยาฟิสิกส์
เอกสารคำสอนฟิสิกส์ 1
ฟิสิกส์ 2 (บรรยาย)
ฟิสิกส์พิศวง
สอนฟิสิกส์ผ่านทางอินเตอร์เน็ต
ทดสอบออนไลน์
วีดีโอการเรียนการสอน
แผ่นใสการเรียนการสอน
เอกสารการสอน PDF
หน้าแรกในอดีต

ทั่วไป
การทดลองเสมือน
บทความพิเศษ
ตารางธาตุ(ไทย1)
พจนานุกรมฟิสิกส์
ลับสมองกับปัญหาฟิสิกส์
ธรรมชาติมหัศจรรย์
สูตรพื้นฐานฟิสิกส์
การทดลองมหัศจรรย์
กิจกรรมการทดลองทางวิทยาศาสตร์

บททดสอบ
แบบฝึกหัดกลาง
แบบฝึกหัดโลหะวิทยา
แบบทดสอบ
ความรู้รอบตัวทั่วไป
อะไรเอ่ย ?
ทดสอบ(เกมเศรษฐี)
คดีปริศนา
ข้อสอบเอนทรานซ์
เฉลยกลศาสตร์เวกเตอร์
แบบฝึกหัดออนไลน์

สรรหามาฝาก
คำศัพท์ประจำสัปดาห์
ความรู้รอบตัว
การประดิษฐ์แของโลก
ผู้ได้รับโนเบลสาขาฟิสิกส์
นักวิทยาศาสตร์เทศ
นักวิทยาศาสตร์ไทย
ดาราศาสตร์พิศวง
สุดยอดสิ่งประดิษฐ์
การทำงานของอุปกรณ์ทางฟิสิกส์
การทำงานของอุปกรณ์ต่างๆ

การเรียนฟิสิกส์ผ่านทางอินเตอร์เน็ต
การวัด
เวกเตอร์
การเคลื่อนที่แบบหนึ่งมิติ
การเคลื่อนที่บนระนาบ
กฎการเคลื่อนที่ของนิวตัน
การประยุกต์กฎของนิวตัน
งานและพลังงาน
การดลและโมเมนตัม
การหมุน
สมดุลของวัตถุแข็งเกร็ง
การเคลื่อนที่แบบคาบ
ความยืดหยุ่น
กลศาสตร์ของไหล
กลไกการถ่ายโอนความร้อน
เทอร์โมไดนามิก
คุณสมบัติเชิงโมเลกุลของสสาร
คลื่น
การสั่น และคลื่นเสียง
ไฟฟ้าสถิต
สนามไฟฟ้า
ความกว้างของสายฟ้า
ตัวเก็บประจุ
ศักย์ไฟฟ้า
กระแสไฟฟ้า
สนามแม่เหล็ก
การเหนี่ยวนำ
ไฟฟ้ากระแสสลับ
ทรานซิสเตอร์
สนามแม่เหล็กไฟฟ้า
แสงและการมองเห็น
ทฤษฎีสัมพัทธภาพ
กลศาสตร์ควอนตัม
โครงสร้างของอะตอม
นิวเคลียร์

สมัครสมาชิก
เพื่อรับเอกสารเพิ่ม!