Home arrow บทความวิทยาศาสตร์ arrow ประวัติย่อของดาราศาสตร์
  
เมนูอื่นๆ
Home บทความวิทยาศาสตร์ เซ็นสมุดเยี่ยม
ประวัติย่อของดาราศาสตร์ PDF พิมพ์

ประวัติย่อของดาราศาสตร์

โดย สุทัศน์ ยกส้าน

ประวัติศาสตร์ได้จารึกว่า เมื่อ 2,700 ปีก่อนนี้ ชนชาว Assyrian ได้สังเกตเห็นว่า สุริยุปราคาจะเกิดในเวลากลางวันที่พระจันทร์อยู่ในข้างขึ้นเท่านั้น ส่วนจันทรุปราคาก็จะเกิดเฉพาะในวันที่พระจันทร์เต็มดวงเท่านั้น และเมื่อประมาณ 2,250 ปีก่อนนี้ นักวิทยาศาสตร์กรีกชื่อ Aristarchus แห่งเมือง Samos ได้พยายามวัดระยะทางจากโลกถึงดวงจันทร์ และดวงอาทิตย์ แต่เขาก็ได้ข้อสรุปเพียงว่า ดวงอาทิตย์อยู่ไกลจากโลกยิ่งกว่าดวงจันทร์มาก และดวงอาทิตย์มีขนาดใหญ่กว่าโลกมาก ข้อสรุปประเด็นหลังนี้ ได้ทำให้ Aristarchus เสนอความคิดว่า เพราะดาวที่มีขนาดเล็กน่าจะเป็นดาวบริวารของดาวขนาดใหญ่ ดังนั้น น่าจะต้องโคจรรอบดวงอาทิตย์

แต่ทฤษฎีของ Aristarchus ไม่ได้รับการเหลียวแล เพราะ Claudius Ptolemaeus แห่งเมือง Alexandria คิดว่า ความคิดที่ว่าโลกเคลื่อนที่นั้นเหลวไหล ในตำราชื่อ Almagest ที่ตีพิมพ์ในราว พ.ศ. 700 Ptolemaeus ได้ให้เหตุผลว่า ถ้าโลกเคลื่อนที่จริงหรือหมุนจริง สรรพสิ่งต่างๆ สัตว์ ผู้คนและสิ่งของต่างๆ ที่อยู่บนโลกจะต้องถูกเหวี่ยงกระเด็นหลุดจากโลกหมด

ซึ่งถ้าคิดแบบผิวเผิน เราหลายคน ณ วันนี้คงเชื่อในวิธีคิดของ Ptolemaeus ว่า โลกน่าจะอยู่นิ่งๆ แต่ความผิดพลาดของความคิดนี้ คือ Ptolemaeus ไม่รู้แม้แต่น้อยว่า ปรากฏการณ์ในธรรมชาติทุกเรื่องเกิดขึ้นภายใต้อิทธิพลของแรงหลายแรง ดังนั้น ถ้าเราไม่รู้ขนาดของแรงต่างๆ ว่ามากหรือน้อยกว่ากันเพียงใด เราก็จะสรุปผิด และสำหรับกรณีข้างต้นนั้น แรงโน้มถ่วงที่โลกดึงดูดสรรพสิ่ง มีอิทธิพลมากที่สุด ดังนั้น สรรพสิ่งต่างๆ จึงไม่สามารถกระเด็นหลุดจากโลกได้

ความคิดของ Ptolemaeus ได้รับการยอมรับ โดยผู้คนในโลกโบราณเป็นเวลานานร่วม 1,500 ปี จนกระทั่งปี พ.ศ. 2086 เมื่อ Nicolaus Copernicus ได้นำความคิดของ Aristarchus มาแถลงอีก แต่เขาไม่มีหลักฐานใดๆ ที่สนับสนุนทฤษฎีของเขา เขาจึงต้องอาศัยข้อมูลที่ได้จากการสังเกตดาวต่างๆ ด้วยกล้องโทรทรรศน์ของ Tycho Brahe ผู้เป็นนักดาราศาสตร์ที่ยิ่งใหญ่ แต่ Tycho เป็นนักวิทยาศาสตร์ที่ค่อนข้างหวงความรู้ เพราะเขาต้องการจะสร้างทฤษฎีอธิบายการเคลื่อนที่ของดาวเคราะห์เป็นคนแรก ดังนั้น เขาจึงไม่แพร่งพรายข้อมูลที่เขาวัดได้ให้โลกภายนอกรู้เลย และเมื่อ Tycho เสียชีวิตลง ข้อมูลต่างๆ จึงได้ตกเป็นของ Johannes Kepler นักดาราศาสตร์ผู้ช่วยของ Tycho ซึ่งก็ได้วิเคราะห์จนพบกฎการเคลื่อนที่ของดาวเคราะห์รอบดวงอาทิตย์ ดังนี้

1. วงโคจรของดาวเคราะห์ทุกดวงรอบดวงอาทิตย์เป็นวงรี มิใช่วงกลม

2. ในเวลาที่เท่ากัน เส้นรัศมีที่ลากจากดวงอาทิตย์ถึงดาวเคราะห์ จะกวาดพื้นที่ได้เท่ากัน และ

3. เวลาที่ดาวเคราะห์ทุกดวงใช้ในการโคจรรอบดวงอาทิตย์ แปรผันโดยตรงกับระยะทางเฉลี่ยที่ดาวเคราะห์ดวงนั้นอยู่ห่างจากดวงอาทิตย์ ยกกำลัง 1.5

ข้อสังเกตหนึ่งที่ได้จากกฎทั้งสามข้อนี้ก็คือ กฎข้อสามของ Kepler นับเป็นกฎๆ แรกในวิชาดาราศาสตร์ที่มีลักษณะของสูตรทางคณิตศาสตร์ คำถามที่ติดตามมาคือ เหตุใดกฎการเคลื่อนที่สำหรับดาวเคราะห์ทุกดวงในสุริยจักรวาล จึงเป็นไปตามที่ Kepler พบ

การสังเกตเห็นภูเขาบนดวงจันทร์ เห็นดวงจันทร์ของดาวพฤหัสบดี และเห็นปรากฏการณ์ข้างขึ้นข้างแรมของดาวศุกร์ โดย Galileo Galilei ในปี 2152 ได้ตอกย้ำให้ Galileo เชื่ออย่างแม่นมั่นว่า โลกเป็นเพียงดาวเคราะห์บริวารดวงหนึ่งของดวงอาทิตย์เท่านั้น และโลกโคจรรอบดวงอาทิตย์ตามกฎของ Kepler ทุกประการ สำหรับสาเหตุที่ทำให้นักดาราศาสตร์รู้ธรรมชาติที่แท้จริงของสุริยจักรวาลล่าช้ามากร่วม 1,500 ปี คือการไม่มีกล้องโทรทรรศน์ใช้ เพราะโลกเพิ่งรู้จักกล้องโทรทรรศน์เป็นครั้งแรกในปี พ.ศ. 2151 จากฝีมือประดิษฐ์ของช่างทำแก้วชาวเนเธอร์แลนด์ และ Galileo ได้พัฒนาประสิทธิภาพของกล้องจนสามารถปฏิรูปวิทยาการด้านดาราศาสตร์ในเวลาต่อมาได้ และความจริงที่ประจักษ์ชัดอีกประเด็นหนึ่งก็คือ ปริมาณความรู้ที่เราจะได้จากการศึกษาธรรมชาติขึ้นกับความสามารถของอุปกรณ์ที่เราใช้ในการศึกษาธรรมชาตินั้น ดังจะเห็นได้จากการ Tycho เฝ้าดูดาวพฤหัสบดีด้วยตา แต่เขาไม่มีกล้องโทรทรรศน์ที่จะช่วยให้เขาเห็นดวงจันทร์ของดาวพฤหัสบดี ส่วนตาของ Tycho ก็เห็นเพียงแสงสว่างธรรมดาจากดาว เขาหารู้ไม่ว่าดาวต่างๆ เหล่านั้น สามารถปล่อยแสงอินฟราเรด อัลตราไวโอเลต รังสีเอกซ์ คลื่นวิทยุ รังสีแกมมา ฯลฯ มายังโลกได้ด้วย การมีอุปกรณ์สำหรับรับแสงต่างๆ หลากหลายชนิดเหล่านี้ ทำให้นักดาราศาสตร์ทุกวันนี้รู้ว่า ในจักรวาลที่กว้างใหญ่จนหาขอบเขตไม่ได้ มีดาวนานาชนิด เช่น ดาว quasar ดาวเอกซเรย์ ดาวอินฟราเรด กาแล็กซี supernova, pulsar, black hole และดาว magnestar เป็นต้น

ในการศึกษาวิทยาศาสตร์นั้น การเห็น การพบเหตุการณ์ต่างๆ ยังถือว่าดีไม่พอ ถ้านักวิทยาศาสตร์ยังไม่สามารถอธิบายที่มาและที่ไปของปรากฏการณ์ที่เห็นได้ ดังนั้น การรู้และศึกษาทฤษฎีของดาราศาสตร์ จึงเป็นเรื่องจำเป็น

Isaac Newton เป็นนักฟิสิกส์ผู้ยิ่งใหญ่คนแรกที่ได้ใช้ข้อสังเกตของ Galileo เกี่ยวกับการเคลื่อนที่ของวัตถุที่กำลังตกในแนวดิ่ง และการโคจรของดวงจันทร์ต่างๆ รอบดาวพฤหัสบดี รวมทั้งกฎการเคลื่อนที่ของดาวเคราะห์รอบดวงอาทิตย์ของ Kepler มาประมวลกันแล้วอธิบายว่า เหตุการณ์ต่างๆ ที่ดูเผินๆ แล้วมีหลากหลายรูปแบบนี้ สามารถอธิบายสาเหตุความเป็นมาได้ด้วยกฎการเคลื่อนที่ของเขา และกฎแรงโน้มถ่วงเท่านั้น และในการอธิบายเหตุการณ์เหล่านี้ Newton ได้ใช้คณิตศาสตร์ แคลคูลัสที่เขาคิดขึ้นมาใหม่

ความจริง Newton มิได้เป็นนักวิทยาศาสตร์คนเดียวที่พบกฎแรงดึงดูดระหว่างมวล Robert Hooke เป็นนักฟิสิกส์อีกคนหนึ่งที่พบกฎนี้ว่า แรงดึงดูดระหว่างมวล แปรผกพันกับระยะทางที่มวลทั้งสองอยู่ห่างกันยกกำลังสอง แต่ Hooke ไม่มีความสามารถทางคณิตศาสตร์เทียบเท่า Newton ดังนั้น ทฤษฎีของเขาจึงอธิบายกฎของ Kepler ไม่ได้ ในขณะที่ทฤษฎีและคณิตศาสตร์ของ Newton สามารถอธิบายการเคลื่อนที่ของดาวเคราะห์ ของดวงจันทร์ ของดาวหางของกระสุนปืนใหญ่ ของลูกแอปเปิล ฯลฯ ได้หมด


ข้อสังเกตหนึ่งที่ได้จากเหตุการณ์นี้ก็คือ ในวงการวิทยาศาสตร์นั้น ใครๆ ก็มีความคิดได้ เพราะทั้ง Hooke และ Newton ต่างก็คิดถึงเรื่องแรงโน้มถ่วง แต่โลกยอมรับในความยิ่งใหญ่ของ Newton เพราะ Newton มีเทคนิคและความสามารถในการใช้ทฤษฎีที่เขาคิดคำนวณ จนสามารถอธิบายเหตุการณ์ที่ Aristarchus, Copernicus, Tycho, Galileo, Kepler ฯลฯ เห็น สังเกต และวัดได้หมดเท่านั้นยังไม่พอ ทฤษฎีแรงโน้มถ่วงของ Newton ยังสามารถพยากรณ์ได้อีกว่า ดาวหาง Halley จะมาเยือนโลกอีกในปี 2302 ซึ่งในปีดังกล่าว ดาวหาง Halley ก็ได้มาปรากฏให้ชาวโลกยุคนั้นเห็นจริงๆ ดังนั้น กฎแรงโน้มถ่วงของ Newton จึงเป็นกฎสากลที่ใช้ได้กับสสารทุกชนิด ทุกสถานที่ และทุกเวลา


เมื่อถึงสมัยคริสต์ศตวรรษที่ 20 นักดาราศาสตร์ได้หันมาสนใจศึกษาหาเหตุผลว่า ดาวฤกษ์และดวงอาทิตย์เปล่งแสงและปล่อยพลังงานความร้อนได้อย่างไร และก็ได้มีนักฟิสิกส์หลายคนที่เสนอความคิด เช่น หลายคนคิดว่าปฏิกิริยาเคมีคือแหล่งกำเนิดของพลังงานแสงอาทิตย์ บ้างก็ว่า การสลายตัวของธาตุกัมมันตรังสีบนดวงอาทิตย์ บ้างก็ว่า การหดตัวของดวงอาทิตย์ภายใต้อิทธิพลของแรงโน้มถ่วง แต่การตรวจสอบโดยใช้หลักฐานที่สังเกตได้ และการคำนวณ ทำให้คนยุคนั้นรู้ว่าข้อเสนอต่างๆ เหล่านั้น ไม่ใช่สาเหตุที่แท้จริง


จนในปี พ.ศ. 2482 Han Bethe ซึ่งมีความรู้ฟิสิกส์ด้านนิวเคลียร์เยี่ยมยอด ได้เสนอความคิดว่า การรวมตัวระหว่างธาตุไฮโดรเจนเป็นธาตุฮีเลียม คือ สาเหตุที่ทำให้ดวงอาทิตย์สามารถปล่อยพลังงานมาได้นานนับ 5,000 ล้านปีแล้ว และจะปล่อยพลังงานต่อไปได้อีกนาน 5,000 ล้านปี ในอนาคต นอกจากนี้ Bethe ก็ยังได้เสนอทฤษฎีการปล่อยพลังงานแสงและความร้อนในดาวฤกษ์ที่มีขนาดใหญ่กว่า และอุณหภูมิสูงกว่าดวงอาทิตย์อีกด้วยว่า เกิดจากการมีธาตุ carbon-hitrogen และ oxygen บนดาวเหล่านั้น เป็นธาตุที่ช่วยเร่งในการเกิดปฏิกิริยานิวเคลียร์


ส่วนในประเด็นที่เกี่ยวกับโครงสร้าง กำเนิด และวิวัฒนาการของจักรวาลนั้น นักวิทยาศาสตร์ได้อาศัยทฤษฎีสัมพันธภาพทั่วไปของ Albert Einstein ในการอธิบายและทำนาย เพราะในปี พ.ศ. 2472 Edwin Hubble ได้พบว่า จักรวาลมิได้อยู่นิ่ง คือขนาดมิได้คงที่ แต่กำลังเพิ่มตลอดเวลา การพบเหตุการณ์เช่นนี้ได้ทำให้นักดาราศาสตร์ต้องค้นหาสาเหตุที่ทำให้เหตุการณ์นี้เกิด และก็ได้พบว่า ในการอธิบายเหตุการณ์จักรวาลขยายตัว สมการที่ Einstein คิด สามารถอธิบายได้ดี ถ้าสมการนั้นมีคำคำหนึ่งซึ่ง Einstein เรียก cosmological constant (ค่าคงที่จักรวาล) ที่ Einstein ในตอนแรกคิดว่า มีค่าเป็นศูนย์ และการสังเกตในช่วงเวลา 5 ปีที่ผ่านมานี้ ซึ่งแสดงให้เห็นว่า จักรวาลกำลังขยายตัวด้วยความเร่ง นั่นคือ กาแล็กซีต่างๆ กำลังพุ่งแยกจากกันด้วยความเร็วที่สูงขึ้นๆ ตลอดเวลา ได้ทำให้นักดาราศาสตร์ ณ วันนี้ยอมรับแล้วว่า ค่าคงที่จักรวาลของ Einstein มิได้มีค่าเป็นศูนย์แน่ๆ


ถึงแม้ Einstein จะเคยคิดว่า ค่าคงที่นี้เป็นศูนย์ ซึ่งเป็นการคิดที่ผิด และ Einstein รู้สึกละอายมาก แต่ความคิดหลักและทฤษฎีสัมพันธภาพทั่วไปของ Einstein ในภาพรวมไม่ผิดเลย เพราะทฤษฎีนี้ได้ทำให้ Subrahmanyan Chandrasckhar สามารถอธิบายโครงสร้างของดาวฤกษ์ได้ และทำให้ Robert Herman George Gamow กับ Ralph Alpher อธิบายกำเนิดของจักรวาลในรูปของการระเบิดครั้งยิ่งใหญ่ (big bang) เป็นการนำความรู้ด้านนิวเคลียร์ฟิสิกส์กับทฤษฎีสัมพันธภาพทั่วไปมารวมกัน เพื่ออธิบายว่า ธาตุ hydrogen, deuterium, helium, lithium และ berylluim ถือกำเนิดอย่างไร อีกทั้งช่วยทำนายด้วยว่า หลังจากการระเบิดแล้ว รังสีไมโครเวฟและอนุภาค neutrino ต่างๆ ณ วันนี้มีมาก และมีอุณหภูมิสูงเพียงใดด้วย


สถานภาพของดาราศาสตร์ปัจจุบัน จึงเป็นว่า ณ วันนี้เราเชื่อว่า เราสามารถเข้าใจอดีต ธรรมชาติ และวิวัฒนาการของจักรวาลได้โดยใช้ทฤษฎีของฟิสิกส์ แต่เราก็ยังไม่มั่นใจว่า ปรากฏการณ์ต่างๆ ที่เรายังไม่เห็น หรือยังไม่พบนั้น จะสามารถอธิบายได้ด้วยวิชาฟิสิกส์ที่เรารู้ ณ วินาทีนี้ได้ และเมื่อนักดาราศาสตร์รู้ว่าสิ่งต่างๆ ที่เราเห็น (ดาวฤกษ์ กาแล็กซี ดาวหาง อุกกาบาต nebule เมฆอวกาศ ฯลฯ เป็นเพียง 4% ของสสารที่จักรวาลมีส่วนสสารอีก 96% ที่จักรวาลมี (ซึ่งเรียกรวมกันว่า กาฬสสาร dark matter และ กาฬพลังงาน dark energy) ที่ใครก็ยังไม่รู้ว่ามันเป็นอะไรแน่ หรืออยู่ที่ไหนบ้าง และมีขนาดใหญ่เล็กเพียงใดนั้น ก็พอจะทำให้เรารู้จักและเข้าใจธรรมชาติไม่ถึง 4% เท่านั้นเอง

ในอนาคต นักดาราศาสตร์กำลังมุ่งหากาฬสสาร หาคลื่นโน้มถ่วง พัฒนาทฤษฎี brane ที่จะอธิบายแรงทุกรูปแบบในธรรมชาติครับ

สุทัศน์ ยกส้าน ภาคีสมาชิก ราชบัณฑิตยสถาน


Views: 1016

ความคิดเห็นแรก

Only registered users can write comments.
Please login or register.

Powered by AkoComment Tweaked Special Edition v.1.4.6
AkoComment © Copyright 2004 by Arthur Konze - www.mamboportal.com
All right reserved

< ก่อนหน้า   ถัดไป >
ขณะนี้มี 29 บุคคลทั่วไป ออนไลน์
สถิติผู้เยี่ยมชม
ผู้เยี่ยมชม: 11725713  คน
หนังสืออิเล็กทรอนิกส์
ฟิสิกส์ 1 (ภาคกลศาสตร์)
ฟิสิกส์ 1 (ความร้อน)
ฟิสิกส์ 2
กลศาสตร์เวกเตอร์
โลหะวิทยาฟิสิกส์
เอกสารคำสอนฟิสิกส์ 1
ฟิสิกส์ 2 (บรรยาย)
ฟิสิกส์พิศวง
สอนฟิสิกส์ผ่านทางอินเตอร์เน็ต
ทดสอบออนไลน์
วีดีโอการเรียนการสอน
แผ่นใสการเรียนการสอน
เอกสารการสอน PDF
หน้าแรกในอดีต

ทั่วไป
การทดลองเสมือน
บทความพิเศษ
ตารางธาตุ(ไทย1)
พจนานุกรมฟิสิกส์
ลับสมองกับปัญหาฟิสิกส์
ธรรมชาติมหัศจรรย์
สูตรพื้นฐานฟิสิกส์
การทดลองมหัศจรรย์
กิจกรรมการทดลองทางวิทยาศาสตร์

บททดสอบ
แบบฝึกหัดกลาง
แบบฝึกหัดโลหะวิทยา
แบบทดสอบ
ความรู้รอบตัวทั่วไป
อะไรเอ่ย ?
ทดสอบ(เกมเศรษฐี)
คดีปริศนา
ข้อสอบเอนทรานซ์
เฉลยกลศาสตร์เวกเตอร์
แบบฝึกหัดออนไลน์

สรรหามาฝาก
คำศัพท์ประจำสัปดาห์
ความรู้รอบตัว
การประดิษฐ์แของโลก
ผู้ได้รับโนเบลสาขาฟิสิกส์
นักวิทยาศาสตร์เทศ
นักวิทยาศาสตร์ไทย
ดาราศาสตร์พิศวง
สุดยอดสิ่งประดิษฐ์
การทำงานของอุปกรณ์ทางฟิสิกส์
การทำงานของอุปกรณ์ต่างๆ

การเรียนฟิสิกส์ผ่านทางอินเตอร์เน็ต
การวัด
เวกเตอร์
การเคลื่อนที่แบบหนึ่งมิติ
การเคลื่อนที่บนระนาบ
กฎการเคลื่อนที่ของนิวตัน
การประยุกต์กฎของนิวตัน
งานและพลังงาน
การดลและโมเมนตัม
การหมุน
สมดุลของวัตถุแข็งเกร็ง
การเคลื่อนที่แบบคาบ
ความยืดหยุ่น
กลศาสตร์ของไหล
กลไกการถ่ายโอนความร้อน
เทอร์โมไดนามิก
คุณสมบัติเชิงโมเลกุลของสสาร
คลื่น
การสั่น และคลื่นเสียง
ไฟฟ้าสถิต
สนามไฟฟ้า
ความกว้างของสายฟ้า
ตัวเก็บประจุ
ศักย์ไฟฟ้า
กระแสไฟฟ้า
สนามแม่เหล็ก
การเหนี่ยวนำ
ไฟฟ้ากระแสสลับ
ทรานซิสเตอร์
สนามแม่เหล็กไฟฟ้า
แสงและการมองเห็น
ทฤษฎีสัมพัทธภาพ
กลศาสตร์ควอนตัม
โครงสร้างของอะตอม
นิวเคลียร์

สมัครสมาชิก
เพื่อรับเอกสารเพิ่ม!