Home arrow บทความวิทยาศาสตร์ arrow ส่วนประกอบและการทำงานของเครื่องยนต์
  
เมนูอื่นๆ
Home บทความวิทยาศาสตร์ เซ็นสมุดเยี่ยม
ส่วนประกอบและการทำงานของเครื่องยนต์ PDF พิมพ์

เครื่องยนต์
             เครื่องยนต์เป็นต้นกำลังของเครื่องมือทุ่นแรงในการเกษตรตลอดจนรถแทรกเตอร์ และรถไถเดินตาม โดยทั่วไปคือเครื่องยนต์จุดระเบิดภายใน กำลังที่ได้จากเครื่องยนต์จะถูกถ่ายทอดไปยังชิ้นส่วน และระบบต่างๆ  เช่น  ล้อ เพลาอำนวยกำลัง เพื่อใช้ในการฉุดลากและขับเคลื่อนอุปกรณ์ทางการเกษตรต่างๆ  เช่น   เครื่องพ่นสารเคมี ไถ

             เครื่องยนต์สามารถแบ่งออกได้ตามชนิดของน้ำมันเชื้อเพลิงที่ใช้ ถ้าใช้น้ำมันเบนซินเป็นน้ำมันเชื้อเพลิง เรียกว่าเครื่องยนต์เบนซิน  ถ้าใช้น้ำมันดีเซลเป็นน้ำมันเชื้อเพลิง เรียกว่าเครื่องยนต์ดีเซล

             ส่วนประกอบที่สำคัญของเครื่องยนต์ได้แก่

ฝาสูบ (Cylinder Head) 

             คือส่วนที่อยู่ตอนบนสุดของเครื่องทำหน้าที่ปิดส่วนบนของเครื่องและเป็นที่ตั้งของหัวฉีด ลิ้นไอดี  ลิ้นไอเสีย  เป็นต้น

เสื้อสูบ (Cylinder Block)

 คือส่วนที่อยู่ตอนกลางของเครื่อง  ทำหน้าที่ห่อหุ้มกระบอกสูบ  เพลาข้อเหวี่ยง และส่วนประกอบอื่นๆ

อ่างน้ำมันเครื่อง (Crank Case)

คือส่วนที่อยู่ตอนล่างของเครื่อง  ปกติตอนบนของอ่างน้ำมันเครื่องจะหล่อติดกับเสื้อสูบ  ส่วนตอนล่างเรียกว่าอ่างเก็บน้ำมันเครื่อง (oil pan)  ทำหน้าที่เก็บน้ำมันเครื่องเพื่อส่งไปยังส่วนต่างๆ ของเครื่องยนต์ที่ต้องการการหล่อลื่น

กระบอกสูบ (Cylinder)

 คือส่วนที่ได้รับน้ำมันเชื้อเพลิงและอากาศเพื่อการจุดระเบิดและให้กำลังงานออกมา

ลูกสูบ (Piston)

 คือชิ้นส่วนที่เคลื่อนที่ขึ้นลงภายในกระบอกสูบ เพื่ออัดน้ำมันเชื้อเพลิงและอากาศให้มีความดันและอุณหภูมิเหมาะกับการเผาไหม้และให้กำลังออกมา

ก้านสูบ (Connecting Rod)

 คือส่วนที่ทำหน้าที่ถ่ายทอดกำลังที่เกิดขึ้นเนื่องจากการจุดระเบิดเผาไหม้เชื้อเพลิงภายในกระบอกสูบไปยังชิ้นส่วนต่างๆ ก้านสูบจะติดกับลูกสูบ

เพลาข้อเหวี่ยง (Crankshaft)

 คือส่วนที่ทำหน้าที่ถ่ายทอดกำลังจาก้านสูบและเปลี่ยนการเคลื่อนที่จากการเคลื่อนขั้นลงเป็นการหมุนเป็นวงกลม


เพลาลูกเบี้ยว (Camshaft) 

คือเพลาทำหน้าที่ปิดเปิดลิ้นไอเสีย  เพลาลูกเบี้ยวเคลื่อนที่ด้วยเฟืองที่ขบกับเฟืองของเพลาข้อเหวี่ยง

ลิ้นไอดี (Intake Valve) 

ทำหน้าที่ปิดและเปิดให้น้ำมันเชื้อเพลิงเข้าไปในกระบอกสูบ

ลิ้นไอเสีย (Exhaust Valve ) 

ทำหน้าที่ปิดและเปิดให้แก๊สที่เกิดจากากรเผาไหม้ออกจากระบอกสูบ

สปริง (Valve Spring) 

เป็นสปริงที่กดให้ลิ้นปิด

หัวฉีด (Injector)

คืออุปกรณีที่ทำให้น้ำมันเชื้อเพลิงของเครื่องยนต์ดีเซลเป็นฝอยละเอียด พ่นเข้าไปยังส่วนบนของกระบอกสูบ

หัวเทียน (Spark Plug)

เป็นอุปกรณ์ที่ทำให้เกิดประกายไฟ เพื่อจุดไอดีของเครื่องยนต์เบนซินให้ลุกไหม้ และเกิดการระเบิดขึ้นภายในกระบอกสูบ 

ล้อช่วยแรง (Fly wheel)

 จะติดอยู่ตรงปลายเพลาข้อเหวี่ยง  มีหน้าที่ช่วยสะสมพลังงาน  ทำให้เครื่องยนต์เดินเรียบ


เครื่องยนต์จุดระเบิดภายในมีจังหวะการทำงาน 4 จังหวะ และ 2 จังหวะ ซึ่งพบในเครื่องยนต์เบนซิน และเครื่องยนต์ดีเซล 

เครื่องยนต์ดีเซล  4  จังหวะ  (4 Cycle Diesel Engine)

             เครื่องยนต์แบบนี้  มีการทำงานแบ่งออกเป็น  4 จังหวะ คือ จังหวะดูด จังหวะอัด  จังหวะระเบิด  และจังหวะคาย  การทำงานทั้ง 4 จังหวะของลูกสูบเท่ากับการหมุนของเพลาข้อเหวี่ยง 2 รอบ

             เครื่องยนต์ดีเซลมีหัวฉีดที่ทำหน้าที่ฉีดน้ำมันเชื้อเพลิงให้กระจายเป็นฝอยเล็กๆ เข้าไปในกระบอกสูบ  เพื่อผสมกับอากาศที่ถูกอัดภายในกระบอกสูบที่มีความดันและอุณหภูมิสูงพอเหมาะ และจะเกิดระเบิดเอง

             การทำงานของเครื่องยนต์ดีเซล 4 จังหวะ  มีดังนี้

1.  จังหวะดูด (Suction Stroke)  ลูกสูบจะเคลื่อนที่ลง ลิ้นไอดีจะเปิด และลิ้นไอเสียจะปิด ขณะที่ลูกสูบเคลื่อนที่ลงจะเกิดสูญญากาศภายในกระบอกสูบทำให้เกิดการดูดเอาอากาศเพียงอย่างเดียวเข้ามาในกระบอกสูบ  เมื่อลูกสูบเคลื่อนที่ลงจนถึงจุดศูนย์ตายล่าง  ลิ้นไอดีจะปิดเพื่อป้องกันไม่ให้อากาศหนีออกไป

2.  จังหวะอัด (Compression Stroke) ลูกสูบเคลื่อนที่ขึ้นขณะที่ลิ้นไอดีและไอเสียปิดทำให้เกิดการอัดอากาศภายในกระบอกสูบจนกระทั่งลูกสูบเคลื่อนที่ถึงจุดศูนย์ตายบน  ปริมาตร  ของอากาศจะเหลือประมาณ 1/16 ของปริมาตรเดิมและอุณหภูมิจะสูงประมาณ 550 องศาเซลเซียส

3.  จังหวะระเบิด (Power Stroke)  เมื่อลูกสูบอยู่ที่ตำแหน่งศูนย์ตายบน  อากาศจะถูกอัดเต็มที่และมีความร้อนสูง  หัวฉีดก็จะฉีดน้ำมันเชื้อเพลิงเข้าไปในกระบอกสูบทำให้เกิดการระเบิด และผลักลูกสูบให้เคลื่อนที่ลง

4.  จังหวะคาย (Exhaust Stroke)  ลูกสูบจะเคลื่อนที่ขึ้น ลิ้นไอดีจะปิด แต่ลิ้นไอเสียจะเปิด  ทำให้อากาศเสียที่เกิดจากการเผาไหม้ถูกขับออก  เมื่อสิ้นสุดจังหวะคายแล้วลูกสูบก็จะเคลื่อนที่ลงทำให้เกิดจังหวะดูดต่อไป

เครื่องยนต์เบนซิน 4 จังหวะ ( 4  Cycle Gasoline Engine )

โครงสร้างพื้นฐานของเครื่องยนต์เบนซิน 4 จังหวะ

             เครื่องยนต์เบนซิน 4 จังหวะ สามารถจัดแบ่งกลุ่มชิ้นส่วนโครงสร้างที่เป็นพื้นฐานของเครื่องยนต์ได้ดังนี้

  

ลักษณะพื้นฐานของเครื่องยนต์เบนซิน 4 จังหวะ

              1.  เสื้อสูบกับกระบอกสูบและห้องเพลาข้อเหวี่ยง   เป็นชิ้นส่วนเครื่องยนต์ที่เป็นโครงสร้างหลักสำหรับยึดชิ้นส่วนอื่นๆของเครื่องยนต์

             2.  กลไกลูกสูบและข้อหมุนเหวี่ยง  (Piston & Cranking Mechanism) ประกอบด้วย ลูกสูบ  ก้านสูบ  เพลาข้อเหวี่ยง  และล้อช่วยแรงซึ่งเป็นชิ้นส่วนเคลื่อนที่ของเครื่องยนต์ที่รับความดันจากการเผาไหม้ในห้องสูบแล้วเปลี่ยนเป็นแรงกระทำบนหัวลูกสูบ  ไปส่งต่อผ่านก้านสูบไปกระทำที่ก้านหมุนเพลาข้อเหวี่ยงทำให้เพลาข้อเหวี่ยงหมุนอย่างเรียบจ่ายแรงบิดออกไปใช้งาน

             3.  ฝาสูบ  เป็นฝาปิดกระบอกสูบทำให้เกิดเป็นห้องเผาไหม้ขึ้นในเครื่องยนต์และทำให้เป็นปริมาตรอัดเกิดขึ้นบนฝาสูบ

             4.  กลไกลิ้น (Valve Mechanism) หรือกลไกขับควบคุมการทำงานของเครื่องยนต์ (Engine Steering Mechanism)  ประกอบขึ้นด้วย เพลาลูกเบี้ยว  ปลอกกระทุ้งลิ้น  ก้านกระทุ้งลิ้น  กระเดื่องกดลิ้น  สปริงลิ้นและลิ้น

                ส่วนชิ้นส่วนอุปกรณ์เครื่องยนต์อื่นๆเช่น  คาร์บูเรเตอร์  ระบบจุดระเบิด  ปั๊มน้ำ  อัลเตอร์เนเตอร์  มอเตอร์สตาร์ท  ปั๊มน้ำมันเครื่อง ฯลฯ เป็นชิ้นส่วนของระบบการทำงานเครื่องยนต์ที่มีแตกต่างกันตามแบบของระบบนั้นๆ
  

 เครื่องยนต์เบนซิน 4 จังหวะ 4 สูบ 

กระบวนการทำงานในแต่ละจังหวะของเครื่องยนต์เครื่องยนต์เบนซิน 4 จังหวะ

             ในแต่ละกลวัฏเครื่องยนต์  ขั้นตอนตามลำดับตลอดกลวัฏเครื่องยนต์คือการดูด  การอัด  การใช้งาน  และการคายดำเนินไปกับการเคลื่อนที่ของลูกสูบทั้ง 4 ช่วงชักดังต่อไปนี้

             1.  จังหวะดูด (Suction Stroke) 

                การดูดหรือการบรรจุสูบเริ่มจากลิ้นไอดีเปิดก่อนที่ลูกสูบถึงศูนย์ตายบนเล็กน้อยจนกระทั่งลูกสูบเลื่อนลงแล้วผ่านลงศูนย์ตายล่าง  กระบอกสูบจะได้รับการบรรจุสูบหรือการใส่เชื้อผสมของเชื้อเพลิงกับอากาศตลอดเวลาระหว่างจังหวะดูด

                ในระหว่างที่ลูกสูบเลื่อนตัวเองไปหลังศูนย์ตายบนทำให้ปริมาตรของกระบอกสูบโตขึ้นและนำไปสู่การลดลงของความดันเป็นความกดดันต่ำจนเหลือประมาณ 0.8-0.9 บาร์ก็จะมีอาการดูดเกิดขึ้นในห้องสูบตามมาด้วยการเปิดของลิ้นไอดี  เชื้อผสมของเบนซินและอากาศก็จะไหลเข้ามาในห้องสูบ

                จากอุณหภูมิทำงาน (Working  Temperature) ของเครื่องยนต์ทำให้อุณหภูมิของแก๊สไอดีที่ไหลเข้ามาสูงขึ้นถึง 100 องศาเซลเซียส

               ตลอดเวลาการดูดของลูกสูบ  เชื้อเพลิงผสมของอากาศและเบนซินจะเข้าสู่ห้องสูบเป็นไปอย่างรวดเร็วเนื่องจากการขยายโตขึ้นของปริมาตรในห้องสูบ  เมื่อลูกสูบเลื่อนลงมีผลทำให้ห้องสูบมีความกดดันต่ำเกิดความแตกต่างและต่ำกว่าภายนอกห้องสูบขึ้นมาก  หมายถึงว่าด้วยขนาดเส้นผ่าศูนย์กลางของลิ้นไอดีที่โตเท่าที่จะทำได้ยอมให้ไอดีไหลผ่านเข้าไปในห้องสูบ  ลิ้นไอดีเปิดก่อนศูนย์ตายบนถึงประมาณ 40 องศาเพลาข้อเหวี่ยง  แต่อย่างไรก็ไม่สามารถ  ทำให้การบรรจุสูบของไอดีเข้าไปทดแทนความดันที่ต่ำลงเป็นไปได้อย่างเต็มที่ 100% และจากการที่กระแสไหลของไอดียังมีพลังอยู่มากด้วยความเฉื่อยของมันในช่วงสั้นๆ หลังศูนย์ตายล่าง  เพื่อต้องการให้มีการบรรจุสูบยาวนานขึ้นจึงยอมให้ลิ้นไอดีเปิดให้ไอดีไหลเข้าห้องสูบอีกต่อไป  จนถึงหลังศูนย์ตายล่างประมาณ 70 องศาเพลาข้อเหวี่ยงแล้วลิ้นไอดีจึงปิด  การบรรจุไอดีเข้าห้องสูบจึงจะสิ้นสุดลง 

  ไดอะแกรมลิ้นของเครื่องยนต์เบนซิน 4 จังหวะ

 จากความเร็วรอบของเครื่องยนต์ทำให้การบรรจุสูบมีเวลาสั้นที่จะไหลเข้าไปผ่านลิ้นไอดี  ลิ้นไอดีจึงต้องเปิดเร็วขึ้นก่อนศูนย์ตายบนและปิดช้าลงหลังศูนย์ตายล่างให้ลิ้นไอดีมีเวลาเปิดยาวขึ้น  รวมช่วงการเปิดของลิ้นไอดีถึงประมาณ 300 องศาเพลาข้อเหวี่ยง  จำนวนองศาก่อนศูนย์ตายบนหรือหลังศูนย์ตายล่างจะมีจำนวนมากหรือน้อยเพียงใดขึ้นอยู่กับการออกแบบจำนวนความเร็วรอบของเครื่องยนต์ 

 การทำงานในห้องสูบของจังหวะดูด 

2.  จังหวะอัด (Compression Stroke)

             การอัดเชื้อผสมของเชื้อเพลิงกับอากาศเกิดขึ้นขณะลูกสูบแล่นขึ้นสู่ศูนย์ตายบนเมื่อลิ้นไอดีปิดแล้วทำให้อุณหภูมิสูงขึ้นแต่การอัดนั้นยังไม่ทำให้อุณหภูมิสูงพอที่จะทำให้เชื้อเพลิงเกิดจุดติดไฟตัวเองหรือเชิงจุด(Self Ignition) ขึ้นได้

             จากอุณหภูมิอัด (Compression Temperature) ที่สูงขึ้นทำให้เชื้อเพลิงกลายเป็นไอระเหย(Vapour) ดีขึ้นกว่าเดิมและเกิดการคลุกเคล้ากับอากาศได้ดีขึ้นด้วยกลายเป็นเชื้อระเบิด(Vapoured Mixture) ในจังหวะอัดลูกสูบเลื่อนตัวเองจากศูนย์ตายล่างขึ้นสู่ศูนย์ตายบน ลิ้นไอดียังเปิดอยู่จนกว่าถึงหลังศูนย์ตายบน 70 องศาเพลาข้อเหวี่ยง ในช่วงนี้ปริมาตรกระบอกสูบจะเล็กลง ความดันและอุณหภูมิเพิ่มสูงขึ้น การวัดขนาดของการอัดที่ศูนย์ตายบนวัดเป็น สัดส่วนความอัด (Copression Ratio) การเลือกใช้อัตราการอัดในเครื่องยนต์ออโตเมื่อลูกสูบอัดสุดหรือปลายจังหวะอัดจะต้องไม่เกิดการชิงจุด (Preignition) ของเชื้อผสมของอากาศและเบนซินในห้องสูบขึ้นได้อันหมายถึงว่าถ้าเกิดการชิงจุดจะทำให้เครื่องยนต์เกิดอาการน็อกขึ้น จากการผลิตน้ำมันเชื้อเพลิงที่ต้านการน็อก (Anti Knock) และการออกแบบลักษณะห้องเผาไหม้ที่เหมาะสมจึงทำให้เครื่องยนต์นี้มีอัตราการอัดสูงขึ้นได้ถึงประมาณ 8 : 1-11 : 1 และอุณหภูมิอัดสูงสุดถึงประมาณ 350 – 450 องศาเซลเซียส อันเป็นอุณหภูมิอัดเฉลี่ยที่มีค่าเป็นกลาง ๆ  ส่วนอุณหภูมิที่เป็นจริงซึ่งสูงกว่านี้จะถูกหล่อเย็นหรือระบายออกไปทางผนังกระบอกสูบส่วนหนึ่งและทางชิ้นส่วนหล่อเย็นอื่น ๆ อีกเช่น หัวสูบลิ้นไอเสียเป็นส่วนใหญ่

             อัตราอัดของเครื่องยนต์เป็นผลให้เกิดความดันอัดหรือกำลังอัด (Compression Pressure) ขึ้นประมาณ 10 –16 บาร์ ผลเสียของการอัดสูง ๆ ติดตามมาคือความดันในจังหวะงานสูงแล้วสิ่งที่ติดตามมาคือ ชิ้นส่วนเครื่องยนต์รับภาระมากเกินไป (Over Load) การจุดติดไฟของเชื้อระเบิดยังอยู่ในช่วงของการที่ลูกสูบแล่นจากศูนย์ตายล่างขึ้นสู่ศูนย์ตายบนในเวลาอันสั้นก่อนศูนย์ตายบน ความดันที่ขึ้นสูงมากขึ้นจึงไม่เกิดขึ้นเพียงปริมาตรที่ค่อนข้างเล็กลงเท่านั้น แต่ยังเพิ่มขึ้นมาจากการเผาไหม้ที่รวดเร็วและรุนแรงที่เรียกว่าการจุดระเบิดอีกด้วย และการเกิดความดันที่เพิ่มขึ้นอย่างมากตามสัดส่วนของกำลังอัดในจังหวะอัดนี้เป็นการเพิ่มความดันในห้องเผาไหม้ที่ค่อย ๆ เกิดขึ้นก่อนลูกสูบถึงศูนย์ตายบนอีกด้วย 



การทำงานในห้องสูบของจังหวะอัด



จังหวะงาน (Working Stroke) หรือจังหวะกำลัง (Power Stroke)

             การใช้งานความดันจากการเผาไหม้เริ่มตั้งแต่การจุดระเบิดจากประกายไฟหัวเทียนก่อนศูนย์ตายบนและเบนซินจะเผาไหม้สมบูรณ์ในช่วงจังหวะอัด แล้วดันหัวลูกสูบหลังจากเปลี่ยนการเคลื่อนที่จากขึ้นเป็นลงให้เลื่อนลงมาจากศูนย์ตายบนสู่ศูนย์ตายล่าง

ที่ความดันสูงเกือบถึงจุดที่เชื้อผสมอากาศและเบนซินจะติดไฟขึ้นได้เอง ประกายไฟจุดระเบิด (Ignition spark) จะปรากฏขึ้นเพื่อเป็นความร้อนที่จะจุดให้เบนซินติดไฟเผาไหม้ขึ้น  ตำแหน่งที่เกิดประกายไฟจุดระเบิดจะอยู่ก่อนศูนย์ตายบนเล็กน้อยตอนปลายจังหวะอัด  เมื่อเกิดการจุดระเบิดขึ้นแล้วเปลวไฟจะลุกลามเผาไหม้เชื้อผสมของเชื้อเพลิงกับอากาศจนกระทั่งเผาใหม้หมดต้องใช้เวลาประมาณ 1/ 1000 วินาที  จึงต้องทำการจุดประกายไฟเพื่อจุดระเบิดก่อนที่ลุกสูบถึงศูนย์ตายบน  ตำแหน่งจุดติดไฟหรือองศาจุดระเบิดขึ้นอยู่กับโครงสร้างของเครื่องยนต์คือความเร็วรอบและภาระ  จำนวนองศาเพลาข้อเหวี่ยงสูงสุดของเครื่องยนต์ประมาณ 40 องศาก่อนศูนย์ตายบน  เมื่อเกิดการเผาไหม้เชื้อผสมที่บรรจุสูบแล้วจะเกิดการขยายตัวของแก๊สเผาไหม้ที่มีความร้อนสูงและความดันที่เกิดขึ้นจะดันให้ลูกสูบแล่นลงสู่ศูนย์ตายล่าง


การทำงานในห้องสูบของจังหวะงาน 

การบวนการเผาไหม้ (Combustion Process)  กระบวนการเผาไหม้เริ่มโดยอณูเล็กๆของเชื้อเพลิงผสมของอากาศและเบนซินได้พบกับประกายไฟของหัวเทียนตรงจุดที่จุดติดไฟ (Ignition Point) การเผาไหม้จะส่งกันต่อออกไปเป็นชั้นๆของเชื้อระเบิดเป็นเปลวติดไฟหรือเปลวนำ (Flame Front) ลุกลามต่อไปเรื่อยๆผ่านเข้าสู่ห้องเผาไหม้แผ่กระจายลุกลามเป็นรูปรัศมีโดยรอบ  เพื่อให้เกิดการจุดระเบิดของเชื้อระเบิดเป็นไปอย่างปลอดภัยจะต้องมีเงื่อนไขดังนี้

1.     เปลวไฟจะต้องมีจำนวนปริมาณความร้อนที่มากพอ

2.   มีความสามารถจุดติดไฟของเชื้อผสมของเชื้อเพลิงกับอากาศจะเกิดขึ้นได้ด้วยประกายไฟจากหัวเทียนเท่านั้น  ไม่ว่าเครื่องยนต์ร้อนขึ้นในอุณหภูมิทำงานหรือเครื่องยนต์เย็นในขณะสตาร์ทติดเครื่อง

การเผาไหม้เชื้อผสมเชื้อเพลิง  จะต้องเผาไหม้หมดเรียบร้อยหลังจากศูนย์ตายบนเพียงเล็กน้อยเมื่อลูกสูบเริ่มเลื่อนลง

จังหวะคาย (Exhaust Stroke)

   การคายเริ่มจาก่อนศูนย์ตายล่างและไปสิ้นสุดที่หลังศูนย์ตายบน  แก๊สเผาไหม้จะต้องถูกนำออกจากห้องเผาไหม้อย่างหมดจดในระหว่างจังหวะงานประมาณ 40-60 องศาเพลาข้อเหวี่ยงก่อนศูนย์ตายล่างลิ้นไอเสียเริ่มเปิด  จากความดันที่เกิดจากการระเบิดและขยายตัวแล้วต้องลดลงเหลือประมาณ 3-5 บาร์จะดันให้แก๊สเผาไหม้เริ่มไหลถ่ายเทออกทางช่องไอเสียด้วยความเร็วสูงพอควร  และเพื่อต้องการให้แก๊สเผาไหม้จำนวนมากที่สุดเท่าที่จะมากได้ไหลออกไปด้วยกระแสไหลมากที่สุด  ลิ้นไอเสียจึงจะปิดหลังจากศูนย์ตายบน 30 องศาเพลาข้อเหวี่ยง


 การทำงานในห้องสูบของจังหวะคาย


เครื่องยนต์ 2 จังหวะ ( 2 Cycle Engine )
             เครื่องยนต์ 2 จังหวะ  (Cycle  Engine)  เป็นเครื่องยนต์แบบง่าย  การทำงานและชิ้นส่วนต่างๆ ของเครื่องยนต์ 2 จังหวะ  มีความยุ่งยากน้อยกว่าเครื่องยนต์แบบ  4 จังหวะ  การนำเอากาศดีเข้าไปในกระบอกสูบและปล่อยอากาศที่เกิดจากการเผาไหม้ออกจากกระบอกสูบเกิดขึ้นโดยการเปิดและปิดของลูกสูบเอง  เครื่องยนต์ชนิดนี้จึงไม่จำเป็นต้องมีลิ้นและกลไกเกี่ยวกับลิ้น

             ลักษณะของเครื่องยนต์ 2 จังหวะ  มีดังนี้

1.  อ่างน้ำมันเครื่องปิดสนิทแต่เครื่องยนต์บางแบบมีช่องให้อากาศหรือไอดีเข้าเพื่อผ่านขึ้นไปในกระบอกสูบ

2. ไม่มีเครื่องกลไกของลิ้น  ลูกสูบจะทำหน้าที่เป็นลิ้นเอง

3.  กระบอกสูบอยู่ในลักษณะตั้งตรง

4.  มีช่องไอดี (Inlet Port) เป็นทางให้อากาศเข้าไปภายในกระบอกสูบ  โดยอาจจะมีเครื่องเป่าอากาศช่วยเป่าเข้าไป

5.   มีช่องไอเสีย (Exhaust Port)  เป็นทางให้อากาศเสียที่เกิดจากการเผาไหม้ออกไปจากกระบอกสูบ

การทำงานของเครื่องยนต์ 2 จังหวะ มีดังนี้

1.  จังหวะคายและดูด  ลูกสูบจะเคลื่อนที่จากจุดศูนย์ตายบนลงมาเรื่อยๆ จนผ่านช่องไอเสีย  ไอเสียก็จะผ่านออกไปทางช่องนี้เมื่อลูกสูบเคลื่อนต่อไปอีกเล็กน้อย  ช่องไอดีก็จะเปิดให้อากาศเข้าไปในกระบอกสูบและไล่ไอเสียออกไปจนหมดสิ้น  ลูกสูบจะเคลื่อนลงจนถึงจุดศูนย์ตายล่าง

2.  จังหวะอัดและระเบิด  ลูกสูบจะเคลื่อนจากศูนย์ตายล่างขึ้นไปเรื่อยๆ จนปิดช่องไอดีและช่องไอเสียตามลำดับ  พร้อมกับอัดอากาศไปด้วยเมื่อลูกสูบเคลื่อนเข้าใกล้จุดศูนย์ตายบน  หัวฉีดก็จะทำการฉีดน้ำมันเชื้อเพลิงให้แตกเป็นฝอยเล็กๆ เข้าไปกระทบกับอากาศที่ถูกอัดจนร้อน  ทำให้เกิดการเผาไหม้และระเบิดดันลูกสูบให้ทำงาน  ในขณะเดียวกันไอเสียก็จะมีความดันสูงด้วย  เมื่อลูกสูบเคลื่อนที่ลงมาเปิดช่องไอดี  อากาศก็จะเข้ามาและทำการขับไล่ไอเสียออกไปทางช่องไอเสียเหลือไว้เพียงแต่ไอดีในห้องเผาไหม้

จะเห็นได้ว่า เมื่อเครื่องยนต์ทำงานครบ 2 จังหวะ  เพลาข้อเหวี่ยงจะหมุนไปได้หนึ่งรอบ

เมื่อลูกสูบอยู่ที่ตำแหน่งศูนย์ตายล่างในจังหวะดูด  ภายในกระบอกสูบจะมีปริมาตรที่บรรจุส่วนผสมน้ำมัน และอากาศหรืออากาศเพียงอย่างเดียว  เมื่อลูกสูบเคลื่อนที่ขึ้นในจังหวะอัด  ปริมาตรนี้จะถูกอัดให้ลดลงตรงส่วนของลูกสูบ  เมื่อลูกสูบเคลื่อนที่ถึงจุดศูนย์ตายบนปริมาตรจะมีขนาดเล็กที่สุด  บริเวณที่มีปริมาตรเล็กนี้ถูกเรียกว่าห้องเผาไหม้        

             สัดส่วนความอัด (Compression Ratio) อัตราส่วนระหว่างปริมาตรภายในกระบอกสูบเมื่อลูกสูบอยู่ที่จุดศูนย์ตายล่างกับปริมาตรภายในกระบอกสูบ เมื่อลูกสูบอยู่ที่ศูนย์ตายบน

             สัดส่วนความอัดของเครื่องยนต์มีความสำคัญมากเพราะมีความสัมพันธ์กับชนิดและคุณภาพของน้ำมันเชื้อเพลิงที่จะนำไปใช้  เครื่องยนต์เบนซินจะมีสัดส่วนความอัดอยู่ระหว่าง 5.5/1 ถึง 8/1 สำหรับเครื่องยนต์ดีเซลนั้น  น้ำมันเชื้อเพลิงจะถูกฉีดเข้าไปในกระบอกสูบหลังจากที่อากาศถูกอัดแล้ว  สัดส่วนความอัดอยู่ระหว่าง 14/1 ถึง 18/1


Views: 8634

ความคิดเห็นแรก

Only registered users can write comments.
Please login or register.

Powered by AkoComment Tweaked Special Edition v.1.4.6
AkoComment © Copyright 2004 by Arthur Konze - www.mamboportal.com
All right reserved

< ก่อนหน้า   ถัดไป >
ขณะนี้มี 63 บุคคลทั่วไป ออนไลน์
สถิติผู้เยี่ยมชม
ผู้เยี่ยมชม: 11733567  คน
หนังสืออิเล็กทรอนิกส์
ฟิสิกส์ 1 (ภาคกลศาสตร์)
ฟิสิกส์ 1 (ความร้อน)
ฟิสิกส์ 2
กลศาสตร์เวกเตอร์
โลหะวิทยาฟิสิกส์
เอกสารคำสอนฟิสิกส์ 1
ฟิสิกส์ 2 (บรรยาย)
ฟิสิกส์พิศวง
สอนฟิสิกส์ผ่านทางอินเตอร์เน็ต
ทดสอบออนไลน์
วีดีโอการเรียนการสอน
แผ่นใสการเรียนการสอน
เอกสารการสอน PDF
หน้าแรกในอดีต

ทั่วไป
การทดลองเสมือน
บทความพิเศษ
ตารางธาตุ(ไทย1)
พจนานุกรมฟิสิกส์
ลับสมองกับปัญหาฟิสิกส์
ธรรมชาติมหัศจรรย์
สูตรพื้นฐานฟิสิกส์
การทดลองมหัศจรรย์
กิจกรรมการทดลองทางวิทยาศาสตร์

บททดสอบ
แบบฝึกหัดกลาง
แบบฝึกหัดโลหะวิทยา
แบบทดสอบ
ความรู้รอบตัวทั่วไป
อะไรเอ่ย ?
ทดสอบ(เกมเศรษฐี)
คดีปริศนา
ข้อสอบเอนทรานซ์
เฉลยกลศาสตร์เวกเตอร์
แบบฝึกหัดออนไลน์

สรรหามาฝาก
คำศัพท์ประจำสัปดาห์
ความรู้รอบตัว
การประดิษฐ์แของโลก
ผู้ได้รับโนเบลสาขาฟิสิกส์
นักวิทยาศาสตร์เทศ
นักวิทยาศาสตร์ไทย
ดาราศาสตร์พิศวง
สุดยอดสิ่งประดิษฐ์
การทำงานของอุปกรณ์ทางฟิสิกส์
การทำงานของอุปกรณ์ต่างๆ

การเรียนฟิสิกส์ผ่านทางอินเตอร์เน็ต
การวัด
เวกเตอร์
การเคลื่อนที่แบบหนึ่งมิติ
การเคลื่อนที่บนระนาบ
กฎการเคลื่อนที่ของนิวตัน
การประยุกต์กฎของนิวตัน
งานและพลังงาน
การดลและโมเมนตัม
การหมุน
สมดุลของวัตถุแข็งเกร็ง
การเคลื่อนที่แบบคาบ
ความยืดหยุ่น
กลศาสตร์ของไหล
กลไกการถ่ายโอนความร้อน
เทอร์โมไดนามิก
คุณสมบัติเชิงโมเลกุลของสสาร
คลื่น
การสั่น และคลื่นเสียง
ไฟฟ้าสถิต
สนามไฟฟ้า
ความกว้างของสายฟ้า
ตัวเก็บประจุ
ศักย์ไฟฟ้า
กระแสไฟฟ้า
สนามแม่เหล็ก
การเหนี่ยวนำ
ไฟฟ้ากระแสสลับ
ทรานซิสเตอร์
สนามแม่เหล็กไฟฟ้า
แสงและการมองเห็น
ทฤษฎีสัมพัทธภาพ
กลศาสตร์ควอนตัม
โครงสร้างของอะตอม
นิวเคลียร์

สมัครสมาชิก
เพื่อรับเอกสารเพิ่ม!